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QUANTUM STATISTICAL THEORY OF PLASMAS AND METALS

We shall assume that the nuclei can be treated
classically, so that

=119 exp(—NZep/RT). (3)

The electrons must, however, be described by Iermi-
Dirac statistics. In the Thomas-Fermi approximation,
_we have®

E oy 2
’-l——%_ o 14 expl (p*/2m—Nepe—u) /kT]

= e QAT ), (©

where
La=[ ey, )
1+= (\epps~+p) /kT, (8)

and the free-electron.chemical potential u is such that
n_o=4x (2mkTh™2)};(ns), 9)
no=w/kT. (10)

For purposes of numerical calculation, it is con-
venient to introduce the following units of length and
energy?®

I Or \} 0.468479X 10~ 8cm

= 47.'2)71)\28'"’<128Z) ==z U

and \ .
fu=32mNe 2= 22.0532Mev, (12)

and also the quantities

s=r/n, 0=hT/6, (13)
de= (6/x22%) 4= 0.84713084274, (14)
=07 (4e) (/) (15)

. _ B
Combining all the above, the Poisson equation (3)
reduces to

o' (x) = 3 (4e) {13 (n4) — Iy (n,) exp[—Z(ny—1s) 1},

(16)
with boundary conditions
b+ (0) = 1:
lim g (2) = 2(8/2) = 20 (17)

For given temperature, bulk density of material,
and value of A, the procedure is as follows: n_o can be
readily calculated from the bulk density, ¢ found from
(13), Iy(n,) from (9), and 7, from the tables and
asymptotic expansions for /; given by McDougall and

#See, for example, Feynman, Metropolis, and Teller, Phys.
Rev. 73, 1561 (1949), Sec. V.

“These are the usual Thomas-Fermi units except that e has
teen replaced by Ae.
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Stoner.” The differential equation (16) can then be
integrated to give ¢ (), and hence 94 (x) from (13).
The distribution of particles about a given nucleus
then follows from (6) and the equivalent of (3)

N4 = 1040 €Xp[ — Z (n1—7,,) J. (18)
The net charge surrounding the given nucleus is
G=4wn® f (ANZenjq— Nen_) x*dx. (19)
0

Using (6), (18), and the differential equation (16),
this can be written

=°)

go=—Ne| ¢y wdx
0

= —NZe[xgp' — o "= —NZe, (20)

from the boundary conditions (17). Thus ¢ is, as it
should be, the negative of the charge on the given
nucleus.

b. Particle Distributions about an Electron

Singling out a specific electron, let the average
electrostatic potential (due to all charges, including the
electron in question) and the average charge density
about this electron be, respectively, ¢ (r) and

p(r) =NZeiry_(r) —Nenn_ _(7). (21)

These quantities are related through the Poisson
equation '

AYy_=—dgp_=—dme(Zin——n__), (22)
with boundary conditions

limrp_(r)=—2Ne
0

limy_(r)=0. (23)
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Tor a neutral plasma, it follows from symmetry
considerations that the distribution of positive charge
about an electron must be identical in form to the
distribution of negative charge about a nucleus. Thus
from (6),

ty_=Z = b 2k Ty (ny).  (24)
Letting '
1-= (\ey—t+p) [k T=\ep_/k T+, (23)
then analogously to (6)
ne _=4x(2mkTh=)i (q_). (26)
Introducing a function ¢_(x) defined by
1-=0""(4e) *(9-/x), (27)

7 J. McDougall and E. C. Stoner, Trans. Roy. Soc. (London),
237A, 67 (1938).




