[exico

i being are deresults aperadiffer

utions

at low densities, or all of the ex-

f atoms (of one d density, such ectrons) are free of their mutual ible to evaluate system by conwe suppose each n λ of its true rticle thus being as, respectively. Hectrons will be trically neutral

(1)

a Nucleus

let the average n all particles, nd the average be respectively

r), (2)

nsities of nuclei given nucleus. related through

 n_{-+}), (3)

(4)

Rev. (to be pub-

We shall assume that the nuclei can be treated classically, so that

$$n_{++} = n_{+0} \exp(-\lambda Z \varepsilon \psi_+ / kT). \tag{5}$$

The electrons must, however, be described by Fermi-Dirac statistics. In the Thomas-Fermi approximation, we have⁵

$$n_{-+} = \frac{8\pi}{h^3} \int_0^\infty \frac{p^2 dp}{1 + \exp[(p^2/2m - \lambda e\psi_+ - \mu)/kT]}$$
$$= 4\pi (2mkTh^{-2})^{\frac{3}{2}} I_{\frac{1}{2}}(\eta_+), \tag{6}$$

where

$$I_m(\eta) = \int_0^\infty y^m (1 + e^{y - \eta})^{-1} dy, \qquad (7)$$

$$\eta_{+} = (\lambda e \psi_{+} + \mu) / kT, \tag{8}$$

and the free-electron chemical potential μ is such that

$$n_{-0} = 4\pi (2mkTh^{-2})^{\frac{3}{2}}I_{\frac{1}{2}}(\eta_{\infty}),$$
 (9)

$$\eta_{\infty} = \mu/kT. \tag{10}$$

For purposes of numerical calculation, it is convenient to introduce the following units of length and energy⁶

$$r_{\lambda} = \frac{h^2}{4\pi^2 m \lambda^2 e^2} \left(\frac{9\pi^2}{128Z}\right)^{\frac{1}{2}} = \frac{0.468479 \times 10^{-8} \text{cm}}{\lambda^2 Z^{\frac{1}{2}}},$$
 (11)

and

$$\theta_{\lambda} = 32m\lambda^4 e^4 h^{-2} = 22.0532\lambda^4 \text{ev},$$
 (12)

and also the quantities

$$x = r/r_{\lambda}, \qquad \theta = kT/\theta_{\lambda}, \tag{13}$$

$$4\epsilon = (6/\pi^2 Z^2)^{\frac{1}{2}} = 0.84713084 Z^{-\frac{2}{3}},$$
 (14)

$$\eta_{+} = \theta^{-1} (4\epsilon)^{-2} (\phi_{+}/x).$$
 (15)

Combining all the above, the Poisson equation (3) reduces to

$$\phi_{+}{}''(x) = \frac{3}{2}(4\epsilon)^{3}\theta^{3}x\{I_{\frac{1}{2}}(\eta_{+}) - I_{\frac{1}{2}}(\eta_{\infty}) \exp[-Z(\eta_{+} - \eta_{\infty})]\},$$

(16)

with boundary conditions

$$\phi_{+}(0) = 1$$

$$\lim_{x \to \infty} \phi_+(x) = x(\phi/x)_{\infty} = x\phi_{\infty}'. \tag{17}$$

For given temperature, bulk density of material, and value of λ , the procedure is as follows: n_{-0} can be readily calculated from the bulk density, θ found from (13), $I_{\frac{1}{2}}(\eta_{\infty})$ from (9), and η_{∞} from the tables and asymptotic expansions for $I_{\frac{1}{2}}$ given by McDougall and

Stoner.⁷ The differential equation (16) can then be integrated to give $\phi_{+}(x)$, and hence $\eta_{+}(x)$ from (15). The distribution of particles about a given nucleus then follows from (6) and the equivalent of (5)

$$n_{++} = n_{+0} \exp[-Z(\eta_{+} - \eta_{\infty})].$$
 (18)

The net charge surrounding the given nucleus is

$$q_{+} = 4\pi r_{\lambda}^{3} \int_{0}^{\infty} (\lambda Zen_{++} - \lambda en_{-+}) x^{2} dx.$$
 (19)

Using (6), (18), and the differential equation (16), this can be written

$$q_{+} = -\lambda Z e \int_{0}^{\infty} \phi_{+}^{"} x dx$$
$$= -\lambda Z e \left[x \phi_{+}^{'} - \phi_{+} \right]_{0}^{\infty} = -\lambda Z e, \tag{20}$$

from the boundary conditions (17). Thus q_+ is, as it should be, the negative of the charge on the given nucleus.

b. Particle Distributions about an Electron

Singling out a specific electron, let the average electrostatic potential (due to all charges, including the electron in question) and the average charge density about this electron be, respectively, $\psi_{-}(r)$ and

$$\rho_{-}(r) = \lambda Zen_{+-}(r) - \lambda en_{--}(r). \tag{21}$$

These quantities are related through the Poisson equation

$$\Delta \psi_{-} = -4\pi \rho_{-} = -4\pi \lambda e (Zn_{+} - n_{-}), \qquad (22)$$

with boundary conditions

$$\lim_{r \to 0} r \psi_{-}(r) = -\lambda e$$

$$\lim_{r \to \infty} \psi_{-}(r) = 0. \tag{23}$$

For a neutral plasma, it follows from symmetry considerations that the distribution of positive charge about an electron must be identical in form to the distribution of negative charge about a nucleus. Thus from (6),

$$n_{+-} = Z^{-1}n_{-+} = 4\pi Z^{-1} (2mkTh^{-2})^{\frac{1}{2}} I_{\frac{1}{2}}(\eta_{+}).$$
 (24)

Letting

$$\eta_{-} = (\lambda e \psi_{-} + \mu) / k T = \lambda e \psi_{-} / k T + \eta_{ec}, \tag{25}$$

then analogously to (6)

$$n_{-} = 4\pi (2mkTh^{-2})^{\frac{1}{2}}I_{\frac{1}{2}}(\eta_{-}).$$
 (26)

Introducing a function $\phi_{-}(x)$ defined by

$$\eta_{-} = \theta^{-1} (4\epsilon)^{-2} (\phi_{-}/x),$$
 (27)

See, for example, Feynman, Metropolis, and Teller, Phys. Rev. 75, 1561 (1949) Sec. V.

Rev. 75, 1561 (1949), Sec. V.

These are the usual Thomas-Fermi units except that ε has been replaced by λε.

⁷ J. McDougall and E. C. Stoner, Trans. Roy. Soc. (London), 237A, 67 (1938).